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of the phase equilibrium. 
In conclusion the author thanks L. A.Galin, S.l. Anisimov and M.la. Azbel' for asses- 

sment of this paper. 
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We consider a non-self-similar problem of point explosion in a detonating gas, 
in a medium of variable initial density. Analytic expressions are obtained show- 
ing the dependence of the pressure, density and gas velocity on the distance from 
the origin of explosion and the radius of detonation wave, the latter obtained by 
solving a differential equation. Computations are performed for the cases of 
spherical and cylindrical symmetry for various values of the adiabatic exponent, 
and the variation of initial density exponent. 

Let us consider a perfect gas which is inviscid and non-heat-conducting. Suppose that 
an instantaneous explosion of finite energy E0 occurs at the insr~t  t = 0 in an unboun- 
ded medium at rest (~ = 0) at a point, or along a plane, or along a staighr line [1] .  
The explosion generates a strong shock wave which propagates through the gas and heats 
it up to the state at which rapid combustion becomes possible. Assuming that the energy 
E o is large and much larger than the amount of energy Qa released during the gas com- 
bustion, we can infer that the gas burns in the direct vicinity of the shock-wave front. 
In this case we can consider the shock wave and the chemical reaction zone together, 
as a single surface of a strong explosion with release of heat, i .e .  treat it as a detonation- 
wave front. 
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Let us denote  by pl the in i t i a l  pressure and by DI the in i t i a l  density depending on the 
in i t i a l  coordinate  ~ of the par t ic le  in accordance  with the law p~ = A~ -~, where A 

is a posit ive d imens iona l  constant  and c0 is an abstract  constant which may be posit ive 
or nega t ive .  The case ca - -  0 corresponds to the constant in i t i a l  density.  

Let Q be the hea t  generat ing capac i ty  of a unit mass of  the burning gas. Then the 
energy Q~ re leased  during the combust ion l~OCeSs by the t ime  the radius of the wavefront 
becomes  equa l  to r~, is 

Q1 ----- a,C'~ - -  ~)-1 plQr~, ct~ - 2 (v - i).~ -~ Cv - 2) ( v - 3) 

where v = i , v = 2 and v = 3 for the plane,  cy l ind r i ca l  and spherical  waves, respec t -  
ive ly .  

From the physical  considerations i t  foUows that  during the first instances fol lowing the 
explosion the gas wi l l  move according to the laws governing a poim explosion without 
detonat ion,  as the contr ibut ion of the energy of  combust ion to the to ta l  energy content  
wi l l  be s m a l l  Assuming that  the energy of explosion Eo is much larger  than the energy 
of  combust ion Q~, we can find a region of flow r 2 < r~*, r..* ---- ( rE  0 / ~.~AQ) r~÷°~ in 
which the de tonat ion  exerts only a weak inf luence [2, 3] .  

On increasing the rad im of the detonat ion  wave the energy of combust ion Q~ increases 
as w e l l  Fo~ this reason the inf luence of  combust ion must be taken into account  in the 
condi t ion  of  conservation of  energy,  at the same t ime  re ta in ing unchanged the m e c h a n i -  
ca l  condit ions at  the wave.  

Below we propose an approximate  method of  solution and consider a non- se l f - s imi l a r  
txoblem of  exp~mion in which the energy of  combust ion Q~ at  the wavefront is taken 
into account .  The  l i aea r i zed  formulat ion of this problem was considered in [4] .  

The solut ion of  the problem under considerat ion is reduced to in tegrat ing a system of  
equations of  gasdynamics  for one -d imens iona l  motions, with the in i t i a l  condit ions at  the 
center  and the boundary condit ions at  the detonat ion-wave front both taken  into account .  
The system of equations of  gasdynamics descr ibing one -d imens iona l  ad i aba t i c  motions 

of the gas during explosion is taken in the following form : 

Ov ~v t Op 

"~"~' ~ a (or) (~' --ri) Ov = 0 (t) 

de p d~ 
0 dt p"- dt - -  

At the instant  t = 0 a f inite amount  of energy Eo is re leased  at  the center  of symmetry  

a - d  the fol lowing in i t i a l  condit ions ate specif ied : 

( r , o ) - - o ,  p(r, 0 ) = p , ~ A ~  -'° (2) 
p (r, 0 ) =  Pl  = const ,  r~ (0) = 0 

The fol lowing laws of  conservation of  mass, energy and the ra te  of  change of  momentum 
must hold at  the detonat ion-wave front 

p l  (b'l - -  ¢) = p.~ ([~ - -  C), P l  (P! - -  C)! ' [  - p l  = P2 ([}2 - -  C)$ + P'~ (3)  

I TIPl i T P'- 
"T" (vl - -  c) ~- + (~I - -  i)  P1 + Q = ~ -  (v, - -  c) -~ ; (~ _ i) o~. 

where e is the shock wave ve loc i ty  and ~ and '~ are specif ic  hea t  capac i t i e s  ahead and 
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behind the wavefront .  
Thus, in order to solve the problem of  point explosion in a detonating gas, we must 

find the solution of  the system ( I )  sac/sfying the boundary conditions (2) and (3) .  The 
system of  defining paramete~rs for the perturbed motion following an explosion, consists 
of  the following quantities 

Ee, Q, A ,  p~, ~, ?, r, t, ¥j (4) 

For simplicit~ we shall assume the detonation wave to be strong, in which case we can 
ignore the init ial  l~ .~ure  p~ and then ~ will vanish from the conditions (3) at the wave- 
front. In the case of  a strong deWnation wave the system (4) of  defining parameters 
implies that, when the dimensionless unknown functions and variables 

f (~., q) ---- viva, g (X, q) ffi p I ~ ,  h (~,, q) ----- p / p ,  (5) 

x = , / , , ,  q =  ~ 

are in~oduced,  then the dimensionless functiom I (~, q), g (~, q) and h 0., q) will also 
depend on the constant parameters -~ and ¢~. The conditions at the s~rong detonation 
wave (p] ---- O) can be written for a gas at rest (v~ = O) in the form 

~.. = c (i - -  8), p~ ---- p~e*" (i - -  ~), Ps --  pl/e 

s = (T + i ) -~  [T - -  V'i  - -  2 (T ~ - -  i) q~] (c,) 

Using the dimensionless variables (5) we can write the conditions at the detonation wave 
in the form 

I, ( i ,  q) ffi i ,  g ,  ( i ,  q) ffi i ,  ~ ( i ,  q) = i (7) 

When Q is arbitrary, the parameter  q becomes variable and the problem will consequen- 
tly be non-self-s imilar .  At small  values of  q the problem can be solved by llneariz/ng 
the init ial  equations (1) with re~pect to small parameter q about the self-similar  solu- 
t ion [6, 8].  

In the present paper the non-serf-similar  problem is solved by specifying one of  the 
functions characterizing the motions by means of  an interpolation fcrraula. The t ime-  
dependent coefficients of  this formula are obtained ruing the integral laws of  conserva- 
tion and the boundary condit iom (6) .  The remaining functions characterizing the mot iom 
are found from the exact  equations of  motion [9, 10] .  

The characteristic~ v~ (t), p~ (t) and p~ (t) at the detonation wave can be found from 
the relation (6), provided that r~ (t) is known. To find r~ (t) we shall utilize the law of  
conservation of  energy connecting the energy of explosion E0 and the energy of  c o m -  
bustion Q~ with the parameters of  the detonation-wave front. 

If  pl = 0, then the integral law of  conservation of energy can be written in the d imen-  
sionleu variables (5) in the fo:m q2 qZ 

11 (8) I~ + / ' ~  (e) I~ - -  v - -  o Jr %TR,-----~ 
where 

p2 (i - -  e~ ~v.." (i - -  ~)2 
]~ (a)== ( T _ i ) p l c  2 == ?-"- '- '~-, ]'~(a)-- 2plc o " " ' T  

1 1 

'1 = .f h~"-ld~" 1,, = .f gf$~"-ld~" 
o o 

Let us introduce the dimensionless quantities R and x 

} ~  T ~  ~ r o ~  t o - -  
to ' to ' \ " ~ - - i  ' ¥ Q 

(8) 
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where r 0 denotes the dynamic length at to the dynamic time. 
The integzal law can be used with advantage to determine the radius r~ (t) of the 

shock wave, ixovlded the solution of (1) has been found. If the dependence of the Euler- 

inn co~dinate r on t and on the Lagrangian co~dinam ~ is known, then the system 

(1) yields analytic expressiom for the velocity, density and pressure in terms of the radius 

r and the radius of the detonation wave. We shaU seek the function r in the foUowing 

form : r ---- c (t) ~' + b (9) 

When c (t), ax (t) and b are chmen l~Operly, the system (1) and the cm'msponding bound- 
ary conditions (2) and (3) can be satisfied, we use the initial coordinams ~ of the par- 
ticle as the Lagrangian coordinate, the latxer assuming the value ~ ---- r~ at the instant 
at which the shock wave passes the particle. Then the coefficients appearing in (9) be- 

come 
c (t) ---- r(2Z-~'), b ---- 0 (10) 

The differential form of the law of conservation of mass together with (9) and (10) yield 

P = P~\ r~ / (tt) 

(:)__~ r~_i  - ~ - ,  ~(:)= 

In the following we shakt assume, when solving the problem, t~mt the density dlstzibu- 
tlon within the shock wave is given by the formulas (11). Then the second equation of 
(1) gives the veloci ty of the gas, and the first equation its presstwe. The third equation 
of (1), which is the energy equation, can be used to determine the radius r~ (t) of the 

shock wave, although the integral  law of comervat ion of energy (8) is more convenient  
for this pro'pine. For this reason, from now on we shall use the latter tn the region of per- 

turbed motion contained within the shock wave. 

Inserting the expression for o (r, t) from (11) into the second equation of  (1)  we obtain 

an equat ion for the veloci ty,  which, when solved with the boundary conditions (2) and (3) 
taken into account,  yields 

( r, r d ~ )  r (i2) 

Imerting v (r, t) from (12) and p (r, t) Horn (II) into the f lr~ equation of(l) we obtain 
an equation for the pressure. The latter, with the boundary condition (3) taken into ac- 

count, can be solved to give the pressure. 
After some simplification we obtain the formulas for the disn'Ibution of the dimension° 

less chezacterisrics of the motion in the perturbed region in the following form : 

h - -  ~ ----- i Jr- ' " " i - -  " " - -  H , , +  Ha In In - -  

03) 
/ ---- " l--H~In" --, g,=  == 

V2 r~ 
where 

H2 2 H s  
H z  a= K z  - -  c~ - r  2 ' H~. = K . . - -  a - t - 2  

H s = r 2  In pz /J  ' 
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K~ == 2Ha - -  2 w . - ~  In P2 dt~ 

The solution (13) satisfies aI1 boundary condi t ions.  The  t ime  t enters this solut ion 
through the character is t ics  of  the mot ion  a t  the detonat ion  wave front and the front coot°  

d ina te  vs (t). The condit ions (6) at  the detonat ion  wave show c lea r ly  that  a l l  cha rac t e r -  
ist ics vs (t), Ps (t) and p~ (t) of the mot ion  in the perturbed region are expressed in terms 
of  the function rs (t) def ining the law of  propagat ion of  the de tonat ion  wave.  If  the va lue  
of  r2 (t) is found, e.  g. from an exper imen t ,  then the formulas (13) give a c o m p l e t e  so lu-  
r ion of  the problem in question, 1. e.  that  concerning an explosion in a med ium of  v a r i a -  
b le  i n i t i a l  density with combust ion tak ing  p lace  at  the wavefront .  

I t  must be noted that  the formulas (13) are reduced to the same form as those obta ined 
in [7] while  solving the problem of  point  explosion in a med ium of  var iab le  in i t i a l  den -  
slty without  combust ion taking p lace  at  the front, but the dependence  of  the functions 

Hx, H~, Hs. and H,  on Rs (q) is given by the formulas 

r'-~ ' q ['f (t - -  e) - -  ej " ~ ' - ~ 2  + q"H~ - -  [v - -  ~ + (2 - -  v) s] 

Q 2 (T - -  i )  n2 d ~  H., 
r'7 eq [3" (t - -  8) - -  gl , - - - ,  + 2 ( t - - s )  dR2 + 

F ' 4( ,-- i)q + ] /  dq V'l 
i~(l - -  ~) - -  8], q - -  1, (i - -  t i  - -  81 Iv-- ~ + (2 - -  v) s] - -  ~ d--~'2 J ~ (14) 

~ = 70 "~ [~" (~ - s)-- el ~ \'T~'~ / 
2 (T -- I) qR~ dq 

H4== £ ( t _ e ) [ T ( t _ ~ _ s ]  dry. 

If the dimensionle~ radius R~ Q) of the detonation-wave front is not known, then by 
replacing in the equation of conservation of energy (8) the functions ! (~, q), g (~,, g) and 

h (~., q) with the corresponding expressions from the solution (13) in which the functions 
H~, //2, H~ and H~ are defined by (14), we obtain for R~ (q) the foIlowlng second order 
ordinary d i f fe ren t ia l  equa t ion :  

A~R.,. ~ + ~2"lr (v -~- £ - -  co) - '  vq (7 - -  t) (v - -  (0 + 2e) - -  

dq f 

' I '[ '~ ( ' -  g ' -  F-,J~q q -F" 
vCi--~)Ci--e)A~ ~:-R~..4~ i __ I , 

['r (t - - 'e)  - -  s l  (v - -  o) -t- 2s) - -  [ ' r ( t  - - ~ - - ' ~ ' ] ~ = c o + 2 s )  J \d /~ . ,  / - -  (t5) 
: I - - £  ~ v - - c o - - e  i - - - ~  q"- q' 

(,,-,~-:. 2~ ' , ;~ ' - 'T~ + :: ~ + . . . .  , ~ . - "  + , ,_co=o 
where 

2R~.q 
.-I] ---- v [': (i -- s) -- s] Cv -- co + 2s) 'z 

Taking the parameter q as the independent variable and R2 (q) as well as z (q) ---- 
dq / dR~ as the functions to be determined, we obtain a system of two ordinary equations 
which we integrated numerically for various values of 7 • The values of Rs (q) obtained 
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were then used to determine the dimensionless characteristics, that is the pressure, ve lo-  
city and density, from the formulas (13). 

Figure 1 depicts, for several values of  the dimensionless parameter q ,  the distributiom 
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